NASA
Technical
Paper
2977

1990

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
information Division

Modeling and Analysis
of the Space Shuttle

Nose-Gear Tire With
Semianalytic Finite
Elements

Kyun O. Kim and Ahmed K. Noor

The George Washington University

Joint Institute for Advancement of Flight Sciences
Langley Research Center

Hampton, Virginia

John A. Tanner
Langley Research Center
Hampton, Virginia






Abstract

A computational procedure is presented for the
geometrically nonlinear analysis of aircraft tires.
The Space Shuttle orbiter nose-gear tire was mod-
eled through use of a two-dimensional laminated
anisotropic shell theory with the effects of variation
in material and geometric parameters included. The
four key elements of the procedure are (1) semi-
analytic finite elements in which the shell variables
are represented by Fourier series in the circumferen-
tial direction and piccewise polynomials in the merid-
ional direction; (2) a mixed formulation with the
fundamental unknowns consisting of strain parame-
ters, stress-resultant parameters, and generalized dis-
placements; (3) multilevel operator splitting to ef-
fect successive simplifications and to uncouple the
equations associated with different Fourier harmon-
ics; and (4) multilevel iterative procedures and re-
duction techniques to generate the response of the
shell. Numerical results of the Space Shuttle orbiter
nose-gear tire model are compared with experimen-
tal measurements of the tire subjected to inflation
loading.

Introduction

Because of the axial symmetry of undeformed
tires, it is desirable in their modeling and analysis to
exploit the substantial capability that currently ex-
ists for the numerical analysis of shells of revolution.
The most commonly used approach for the analysis of
shells of revolution is based on the representation of
the shell variables and loads by a Fourier series in the
circumferential coordinate #, combined with the use
of a numerical discretization technique (such as finite
elements, finite differences, or numerical integration)
in the meridional direction. (See, for example, refs. 1
to 7.) Such an approach has the major advantages
of accuracy and stability (i.e., no locking or spurious
modes) over approaches which use two-dimensional
shell elements. Moreover, for linear problems of shells
with uniform circumferential properties, the Fourier
series representation permits separation of variables
and the equations uncouple in harmonics. However,
when applied to the analysis of tires the approach has
the following drawbacks, which can make the compu-
tational cost of the geometrically nonlinear analysis
of tires quite expensive:

1. For geometrically nonlinear problems, the
unknowns associated with different harmonics are
coupled (see refs. 8 and 9).

2. Even for linear problems, because of the
anisotropy of the cord-tire composites, the symmetric
and antisymmetric responses (with respect to 6 = 0)
asssociated with each harmonic are coupled.

3. For localized loading (e.g., contact pressure on
the tire), a large number of harmonics are needed to
accurately predict the response.

Research on tire modeling and analysis at NASA
Langley Research Center has focused on developing
accurate and cost-effective strategies for predicting
tire response. Included in the research is the develop-
ment of analysis procedures for substantial reduction
of the computational expense resulting from the har-
monic and anisotropic couplings (items 1 and 2) and
the generation of the response associated with large
numbers of harmonics (item 3). The present paper
summarizes the status of these development activi-
ties. To demonstrate the capabilities of the analysis
techniques, numerical studies were conducted with
the Space Shuttle orbiter nose-gear tire. Numerical
results are presented for an inflated Space Shuttle
tire, and these results are compared with experimen-
tal measurements.

Notation

Aij Bij, Dy stiffness coefficients of two-
dimensional shell model of tire
(i,j =1,2,6)

by, by parameters defining geometry of

tire cross section (sce fig. 3)

Cij stiffness coefficients of indi-
vidual unidirectional plies
(i, =1,2,4,5, and 6)

d diameter of tire nylon cord

{E} vector of strain parameters for
shell model of tire (see eq. (2))

E. E, Young’s moduli for nylon cord
and rubber

{E}n vector of strain parameters
associated with nth Fourier
harmonic for shell model of tire
(see eq. (2) and table 1)

ET, elastic modulus (see tables 7
and 8 and fig. 9)

Ey B> elastic moduli in direction of tire
cord and normal to it

epi cord end count, ends per inch

fe volume fraction of nylon cord in

individual plies of tire

{f}m
G, Gy

vector defined in equations (5)

shear moduli for tire cord and
rubber



(@

Gi2,G13

{H}

{H}n

My, My, Mg

N

Ni

2

vector of nonlinear terms associ-
ated with nth Fourier harmonic

(see egs. (5))
shear moduli in plane of tire cord

shear modulus normal to plane of
tire cord

vector of stress-resultant param-
eters for shell model of tire (see

eq. (3))

vectors of stress-resultant param-
eters associated with nth Fourier
harmonic for shell model of tire
(see eq. (3) and table 1)

total thickness of tire

nondimensional thickness of tire
(see fig. 2)

thickness of individual layers of
two-dimensional shell model

total thickness of tire at £ = 0
(see fig. 3)

matrices defined in equations (6)

matrix containing nonlinear
terms (see egs. (9) and (11))

linear matrix associated with nth
Fourier harmonic (see eqs. (5))

submatrices of [K]() (see
eqs. (8))

matrices associated with reduced
equations (see egs. (16) and (17))

number of segments along tire
surfaces

bending and twisting stress
resultants (see fig. 1 and table 1)

number of displacement nodes in
element

number of Fourier harmonics
which are greater than or equal
to 1

shape functions used in approxi-
mating generalized displacements
and external loading

shape functions used in approx-
imating stress resultants and
strain components

Ny, Ny, Ny

n

No

{P},{P}

Py

p?’l

p()

Ds;Pg, P
QS&QG

{a} {4}

R, Ry

To

[Sol, [S], [R]

extensional stress resultants (see
fig. 1 and table 1)

vector normal to reference surface
of tire

Fourier harmonic (circumferential
wave number)

Fourier harmonic at which
global approximation vectors are
generated

right-side vectors in
equations (13)

consistent load vector associated
with nth Fourier harmonic for
tire (see eqgs. {(5))

normal pressure components
associated with nth Fourier
harmonic for shell model of tire
(see eq. (1))

intensity of localized normal
loading of tire (see fig. 10)

inflation pressure acting normal
to inner surface of tire (see figs. 3
and 4)

intensity of external loading in
coordinate directions (see fig. 1)

transverse-shear stress resultants
(see fig. 1 and table 1)

load vectors associated with
reduced equations (see egs. (18)
and (19))

principal radii of curvature in
meridional and circumferential
directions of reference surface of
shell model

normal distance from tire axis to
reference surface (see fig. 3)

=ratf£=0

submatrices of [K](™) (see
egs. (8))

meridional coordinate of tire (see
fig. 1); number of parameters
used in approximating each stress
resultant and strain components
in element

polygonal arc lengths of segment
of tire surfaces (see eq. (A2))



{X}

{X}n

T3

Yi

{Z}n

T
7125713, Y23
€5, 6952659
2e43, 2e03

€1,€2

Dt

O
Ks, Kg, 2K4g

K1, K2

strain energy density of shell
model of tire

displacement components of ref-
erence surface of tire in merid-
ional, circumferential, and normal
directions (see fig. 1 and table 1)

vector of generalized nodal
displacement coefficients for tire

(see eq. (4))

vector of generalized nodal dis-
placement coefficients associated
with nth Fourier harmonic for
shell model of tire (see table 1)

position vector for points to be
interpolated along segment of tire
surfaces (see egs. (Al))

Cartesian coordinates (sce fig. 3)

coordinate normal to tire refer-
ence surfaces (see fig. 1)

position vector for data points of
segment (see eqs. (Al))

vector of unknowns associated
with nth Fourier harmonic (see

eqs. (7))

contact angle in meridional
direction (see fig. 10)

matrix of global approximation
vectors (see eqs. (14))

shear strain components in
principal material axis

extensional strains of reference
surface of tire

transverse-shear strains of shell
model of tire

in-plane strain components in tire
cord direction and normal to it

circumferential (hoop) coordinate
of tire (see fig. 1)

orientation angle used in equa-
tion (24) and table 6

orientation angle of tire cord, deg
bending strains of tire

principal curvatures in meridional
and circumferential directions of
reference surface of shell model

K1.0+ K2,0
A

Ves Vr
V12, V21
3

g

o

01,09
T12.T13: 723
¢

¢s, Op

{¥}n

Superscripts:

1

Subscripts:
max

n

Analysis

principal curvatures at £ =0

tracing parameter identifying
coupling between different
Fourier harmonics (see eqs. (12))

Poisson’s ratios of tire cord and
rubber

major and secondary Poisson’s
ratios in individual plies
dimensionless coordinate along
meridian (see fig. 2)

tension factor

normalized tension factor (sce

eq. (Ad))

in-plane stress components in tire
cord direction and normal to it

shear stress components in
principal material axes

angle between normal to merid-
ian and z-axis (sce fig. 3)
rotational components of refer-

ence surface of tire (see fig. 1 and
table 1)

vector of amplitudes of global
approximation vectors {see

egs. (14))

index of shape functions for
approximating generalized
displacements and external
loadings; ranges from 1 to m

index of shape functions for
approximating stress resultants
and strain components; ranges
from 1 to s

number of iterational cycles
matrix transposition

coefficient of sine terms in
Fourier series

maximum value

Fourier harmonic

Mathematical Formulation

In the present study we model the Space Shut-
tle orbiter nose-gear tire using a moderate-rotation
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Sanders-Budiansky shell theory with the effects of
transverse shear deformation and laminated
dnisotropic material response included (refs. 10 and
11). A total Lagrangian formulation is used and the
fundamental unknowns consist of the five generalized
displacements, the eight stress resultants, and the
corresponding eight strain components of the mid-
dle surface. The sign convention for the different
tire stress resultants and generalized displacements
is shown in figure 1. The concepts presented in the
succeeding sections can be extended to higher or-
der shear deformation theories as well as to three-
dimensional continuum theory.

Spatial Discretization of the Tire

Each of the generalized displacements, the stress
resultants, and the strain components is expanded in
a Fourier series of the circumferential coordinate 8.
The discretization in the meridional direction is per-
formed through the use of a three-field mixed finite-
element model. The following expressions are used
for approximating the external loading, strain com-
ponents, stress resultants, and generalized displace-
ments within each element:

o> o0
p(s,8) = N* (Z pl, cosnf + Z;bln sin n9> (1

n=0 n=1

oG e, ¢]
E(s,8) = N (Z E‘,ll cosnf + Z Eln sin nH) (2)

n=0 n=1

20 oc
H(s,0) = N (Z H! cosnb + Z ﬁfl sin nﬂ) (3)

n=0 n=1

0 00 i
X(s,0) = Nt (Z X! cosnf + Z X, sinn@) (4)
n=0

n=1

where N are the shape functions used in approx-
imating the generalized displacements and external

loading in the meridional direction; N are the shape
functions used in approximating the strain compo-
nents and stress resultants; pj, and pl, refer to the

normal pressure coefficients; X! and X, refer to the
. . . =l
generalized displacement coefficients; E. and E,, re-

fer to the strain parameters; H. and Fﬁ, refer to the
stress-resultant parameters; and subscript n refers to

the quantities associated with the Fourier harmonic
n. Note that the degree of the polynomial shape

functions N( is lower than that of N'. Moreover,
the continuity of the strain components and stress
resultants is not imposed at the interelement bound-
aries and, therefore, the strain and stress-resultant
parameters can be eliminated on the clement level.

In equations (1) to (4), the range of ¢ is 1 to m,
the number of displacement nodes in the element;
the range of [ is 1 to s, the number of parameters
used in approximating each of the strain components
and stress resultants. The shell variables without a
bar are the coeflicients of the cosine series, the shell
variables with a bar are the coeflicients of the sine
series, and a repeated superscript denotes summation
over its entire range. Henceforth, the vectors of
the 10 generalized displacement parameters, of the
16 strain parameters, and of the 16 stress-resultant
parameters chosen in association with the harmonic n
are denoted by {X}n, {H}n, and {E},, respectively.
These vectors can be decomposed into symmetric and
antisymmetric sets {(with respect to § = 0) as shown
in table 1.

Governing Equations

The governing discrete equations of the tire are
obtained through application of the three-field Hu-
Washizu mixed variational principle (see ref. 12).
If the number of terms (harmonics) retained in the
Fourier series is N + 1, then the governing equations
can be written in the following compact form:

£ K0 2o

) K1) Z1

£ KW) Zn
G(O)(Z()»Zla“'sZ]V) P(O)
GW(Z,2y,...,2Zy) pl

+ _ -y . (=006
G2y, 2,,...,Zy) p)

where {Z}, (n = 0,1,..., N) is the vector of
unknowns associated with the nth harmonic and
includes vectors of strain parameters {E},, of stress-
resultant parameters {H},, and of generalized



displacements {X },; [K](") is a lincar matrix; {G}n)
is a vector of nonlincar terms; and {P}™ is a con-
sistent load vector.

The following observations can be made about the

governing equations (egs. (5)):

1.

2.

The first matrix on the left side of equations (5)
is block diagonal, which is a direct consequence
of the orthogonality of the trigonometric func-
tions. The orthogonality of trigonometric func-
tions leads to uncoupling of the equations associ-
ated with the different Fourier harmonics for the
linear case. For the nonlinear case, the vector
{G}(”‘) couples the unknowns associated with all
the harmonics. (See, for example, ref. 9.)

The contributions of the different Fourier harmon-
ics and the anisotropic (nonorthotropic) mate-
rial coefficients to the governing equations can be
identified as follows:

a. Fourier harmonics—The block-diagonal ma-
trix [K]™ (n > 1) in equations (5) is linear
in the Fourier harmonic n. Therefore, [K]("
can be expressed as the sum of two matrices
as follows:

[K]™ = [K] + n|K] (6)

where both [K] and [K] arc independent. of n.
The nonlinear vector {G}{?) is quadratic in n.
b. Anisotropy (nonorthotropy)--A unique fea-
ture of the mixed formulation used herein is
that the anisotropic (nonorthotropic) mate-
rial coefficients are included only in the lin-
ear matrix [K](™. For the lincar case, these
anisotropic coefficients result in the coupling

and

between the symmetric and antisymmetric
shell parameters (sec ref. 13 and table 2).

3. If the vector {Z}, is partitioned into subvectors
of parameters of strains, stress resultants, and
generalized displacements, that is,

E
{Z}n =< H (7)
X

n

then the matrix [K]" can be written in the
following form:

Ko+ K, -R
K|™=| —R! : Se+nS| (8)
S+ nsS!

where the submatrices [K,] and [K,| contain the
contributions of the orthotropic and anisotropic
(nonorthotropic) material coefficients. The ex-
plicit forms of the submatrices [Ko). [Ka]. [So], [S],
and [R] are given in references 14 and 15.

4. The nonlinear vector {G}(") contains bilinear
terms in {H}, and {X}, as well as quadratic
terms in {X },.

Generation of the Nonlinear Response of
the Tire

For a given external loading, the governing non-
linear equations (egs. (5)) are solved by using the
Newton-Raphson iterative technique. The recursion
formulas for the rth iterational cycle are

KO K(OO) E(m) ?(om (n AZy (r) f(n) (r)
K 0 ?HN) AZ, Ji
+ =— 9)
KW 0 AZy f
Zq (r+1) Za (r) AZg (r}
Z Z1 AZ]
= + (10)
ZN ZN AZN



where

— 0
K1) = E{(;'}(1)

(I,J=1to N) (11)

For each Newton-Raphson iteration (represented by eqs. (9) and (10)), another iteration loop is performed
using the preconditioned conjugate gradient (PCG) technique to account for the coupling between the different

harmonics (i.e., the submatrix [K]7),
solved:

(110 + KO0 fazy? =~ - XK {az),
+ KAz} + -+ KOV (azy}) "
KIMAzY = — {100 - 3([R)10{az} + [K)02{aZ},

o+ KAz )"

K]M{AZ)) = — (N0 - X (KN {az)o + [KIVD{AZ) +.. .)(r)

where A is a tracing parameter which identifies the
coupling between the different Fourier harmonics.
When A = 1 equations (12) are equivalent to equa-
tions (9), and when X = 0 the equations uncouple
in harmonics. Note that because of the special struc-
ture of the Jacobian matrix in equations (9), only the
left side associated with the zeroth harmonic needs
to be updated in each iteration. An efficient tech-
nique is described in the next subsection for solving
equations (12).

Efficient Generation of the Response
Associated With Different Harmonics

An efficient procedure is presented herein for gen-
erating the tire responses associated with different
harmonics (solution of egs. (12)). The basic idea of
this procedure is to approximate the tire response
associated with the range of Fourier harmonics, 1 <
n < N, by a linear combination of a few global ap-
proximation vectors that are generated at a particu-
lar value of the Fourier harmonic within that range.
The full equations of the finite-clement model are
solved for only a single Fourier harmonic, and the re-
sponses corresponding to the other Fourier harmon-
ics are generated using a reduced system of equa-
tions with considerably fewer degrees of freedom.
The proposed procedure can be conveniently divided
into two phases: (1) restructuring equations (12), for
1 < n € N, to delineate the dependence on the
Fourier harmonic n, and (2) generating global ap-
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In the inner iteration loop the following uncoupled equations are

/

proximation vectors (or modes) to approximate the
response associated with a range of values of the
Fourier harmonic and determining the amplitudes of
the modes. Application of the procedure to stress
and vibration problems of anisotropic shells of rev-
olution is described in references 16 and 17. Its ap-
plication to the solution of equations (12) is outlined
subsequently.

Restructuring of the governing equations.
If equations (6) and (8) are used, the governing
equations for the harmonic n (1 < n < N) can be
embedded in a single-parameter family of equations
and written in the following compact form:

(1K) + nlR]) {AZ}n = {P()} + MP(n)}  (13)

The two vectors {P(n)} and {P(n)} are quadratic
in n.

Basis reduction and reduced system of
equations. The basis reduction is achieved by ap-
proximating the vector {AZ},,, for a certain range of
Fourier harmonics, 1 < n < N, by a linear combina-
tion of a few global approximation vectors which are
generated at a particular value of the Fourier har-
monic within that range. The approximation is ex-
pressed by the following transformation:

{AZ}n = [F]{‘I’}n (14)



where [['] is a transformation matrix whose columns
are the preselected approximation vectors, and {¥},,
is a vector of unknown parameters representing the
amplitudes of the global approximation vectors for
the harmonics n. The number of components of
{¥}, is much less than the number of components
of {AZ},.

A Bubnov-Galerkin technique is now used to re-
place the original equations (eqs. (13)) by the follow-
ing reduced equations in {¥};:

(] + k) (@b = {ab + M@} (15)

where

[k] = ) [K][T] (16)

~

[k] = [T]*[K)[T] (17)
{q} = [[]"{P(n)} (18)
{q) = [[]'{P(n)} (19)

Selection and generation of global approxi-
mation vectors. The global approximation vectors
are selected to be the response associated with a sin-
gle Fourier harmonic n, and its various-order deriva-
tives with respect to n. Henceforth, the derivatives
of the response with respect to n are referred to as
“path derivatives.” The matrix [[] in equations (14)
is therefore given by

2
r={1azy & azy & vz ],
(20)
The path derivatives are obtained by successive
differentiation of the governing equations (egs. (13)).
The recursion relations for the first three global
approximation vectors can be written in the following

form:

{P} +A{P} (21)

([R’] + n(,[R']) (AZ}a,
([R’] +n,,[f\']) %{AZ}”U - %{P} +X%{f)}

~[B{AzZ).,  (22)

- — 2 2 . 2 ™
([K] + n(,[zq) %{AZ}"O - %{P} + )\%{P}

~2(R| {AZ), (23)

Note that the left-side matrix in equations (21) to
(23) is the same, and therefore it needs to be decom-
posed only once in the process of generating all the
global approximation vectors.

Comments on proposed procedure. The fol-
lowing comments are made concerning the forego-
ing procedure for generating the responses associated
with different harmonics:

1. The particular choice of the global approximation
vectors used herein provides a direct quantitative
measure of the sensitivity of the different response
quantities of the tire to the circumferential wave
number (the Fourier harmonic) n.

2. For problems requiring large numbers of Fourier
harmonics (e.g., 100 or more), the range of n is
divided into intervals of fewer (e.g., 7) harmonics
each; the global approximation vectors and re-
duced equations are generated at an intermediate
value of n within each interval, and the responses
associated with the values of n within that in-
terval are generated by the foregoing procedure.
Note that higher accuracy of the reduced solu-
tions can be obtained by marching backward as
well as forward in the n-space with the reduced
equations.

3. The foregoing procedure can be directly applied to
the solution of the governing nonlinear equations
(egs. (5)). This is accomplished by using a reduc-
tion method, with the control parameter selected
to be load, displacement, or arc length in the so-
lution space and the global approximation vectors
selected to be the various-order derivatives of the
response quantities with respect to the control pa-
rameter (sce ref. 14). The global approximation
vectors are obtained by successive differentiation
of the governing equations (eqgs. (5)) with respect
to the control parameter. The left-side matrix of
those equations has the same form as that of equa-
tions (9). If the global approximation vectors are
evaluated at zero value for the control parameter,
the matrix [K]7) on the left side of equations (9)
vanishes and the equations uncouple in harmon-
ics. The application of the foregoing procedure
considerably reduces the computational effort in
generating the global approximation vectors and
greatly enhances the effectiveness of the reduction
method.

4. The computational effort can be further reduced
by using the procedure outlined in reference 14
to uncouple the equations associated with the
symmetric and antisymmetric shell parameters
(with respect to 8 = 0). The procedure is based
on transferring the anisotropic (nonorthotropic)
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terms (submatrix [K,] in egs. (8)) to the right
sides of equations (12) and adding another level
of PCG iterations to account for them.

Results and Discussion

Numerical studies were performed to assess the
accuracy of the two-dimensional shell model tire
and the effectiveness of the computational proce-
dure described in the preceding section, for generat-
ing the response associated with different harmonics.
Herein, the application of the model and the compu-
tational procedure to the Space Shuttle orbiter nose-
gear tire are presented. The geometric and material
characteristics of the tire are given in figures 2 and 3.
The Space Shuttle orbiter nose-gear tire is a 32 x 8.8
type VII bias-ply tire with a ply rating of 16. The
tire carcass is constructed of 10 lamina of nylon and
rubber with an additional reinforcing ply beneath the
tire tread as shown in figure 2. The tire has a three-
groove tread, but the model assumes a smooth tread
instead. The rated load for the tire is 15000 lb at an
inflation pressure of 320 psi.

The numerical studies were performed with three-
field mixed finite-clement models used for the dis-
cretization of the tire in the meridional direction.
Linear interpolation functions were used to approx-
imate each of the stress resultants and strain com-
ponents, and quadratic Lagrangian interpolation
functions were used to approximate each of the gen-
eralized displacements. The integrals in the govern-
ing equations were cvaluated with a two-point Gauss-
Legendre numerical quadrature formula. Because of
the symmetry of the shell meridian and loading, only
half of the tire meridian was analyzed. The finite-
element models used are shown in figure 4.

Modeling of the Tire Geometry

The Space Shuttle orbiter nose-gear tire was mod-
eled as a two-dimensional laminated shell with vari-
able thickness and variable stiffness. The outer sur-
face of the tire was taken to be the reference surface
of the shell model. A tire was cut into sections and
used to obtain accurate measurements for the cross-
sectional shape of the uninflated tire. A smoothed
spline under tension was used to fit a curve through
the measured coordinates of the cross-sectional pro-
file in a least-squares sense (see refs. 18 and 19). Be-
cause of symmetry, only half of the cross section was
modeled. A smooth variation of the second deriva-
tive, g;%, was achieved by adjusting the standard de-
viations of the measured profile at the data points.
For a detailed description of spline smoothing tech-
niques, see references 19 to 21.

]

The spline function, with the tension factor set
equal to 0.1 and slope continuity enforced at both
ends of the curves, was used to generate additional
points along the tire meridian. The interpolation
procedure is outlined in appendix A and the result-
ing geometric characteristics of the tire are presented
in appendix B and figure 5. The thickness of the
tire carcass at the nodal points of the finite-clement
model was computed along the normal vector to the
tire reference (outer) surface by locating the points
of intersection of the normal vectors with the inner
surface of the tire carcass. To facilitate these compu-
tations the tire inner surface was approximated by a
set of third-degrec polynomials.

Evaluation of Stiffness Coeflicients of the
Two-Dimensional Shell Model

The cord-rubber composite was treated as a lam-
inated material. For the purpose of computing stiff-
ness variations in the meridional direction, the tire
model was divided into seven regions, as shown in fig-
ure 2. Thicknesses of the individual carcass plies were
measured at the interfaces between the regions and
are given in table 3. A linear variation was assumed
for the thickness within each region. The thickness
of the tire tread and sidewall covering was computed
by subtracting the sum of the individual ply thick-
nesses from the total thickness of the carcass at each
location.

The material properties of the different plies were
obtained with the mechanics of material approach,
which has been widely applied to rigid composites.
(See refs. 22 and 23.) The elastic constants of the
tire constituents used in this study are presented in
table 4. It was assumed that nylon cords of two
different diameters were used in the construction of
the tire: d = 0.022 in. for the bottom two plies and
the tread reinforcement in region I, and d = 0.031 in.
for all other plies. '

The cord end counts (epi) for individual plies at
the region interfaces are given in table 5. A linear
variation was assumed for epi within each region.
The formulas for evaluating the composite elastic
coeflicients for each ply, from the properties of the
ply constituents, are given in appendix C.

The stress-strain relations of the two-dimensional
shell were obtained by first transforming the stiff-
nesses of each of the individual layers to the global
shell coordinates (s and #) and then integrating these
coeflicients through the thickness. The cord orienta-
tions in the individual plies of each region are given in
table 6. The following formula was used to determine



0, the angle (in degrees) measured from the s-axis
to the f-axis, at the numerical quadrature points:

§ = Max { (54.382 — 3.884¢ — 148.9652)° ,33°}
(24)
where £ is the dimensionless coordinate along the tire
meridian.

The resulting shell constitutive relations are given
in appendix C. The meridional variations of the
stiffness coefficients of the shell model are shown in
figure 6.

Case of Inflation Pressure

To assess the accuracy of the shell model of the
tire, the deformations produced by uniform inflation
pressure of p, = 320 psi, acting normal to the in-
ner surface, were calculated using the geometrically
nonlinear shell theory. Twelve finite elements were
used in modeling half the cross section (a total of
384 strain parameters, 384 stress-resultant parame-
ters, and 243 nonzero gencralized displacements; see
fig. 4(a)). The calculated values were compared with
the experimental data obtained on the Space Shuttle
orbiter nose-gear tire. (See fig. 2.) The results are
summarized in figures 7 to 9. Close agreement be-
tween the predicted deformations and experimental
results is demonstrated in figure 7. Figures 8 and
9 show the meridional variations of the generalized
displacements, stress resultants, and strain energy
densities. As shown in figure 9 for the case of in-
flation pressure, the transverse-shear strain energy
density is considerably smaller than the extensional
and bending strain energy density.

Case of Localized Loading

To assess the effectiveness of the computational
procedure, linear solutions were obtained for a lo-
calized normal loading on the outer surface simulat-
ing contact pressure. The normal loading (in pounds
per square inch) is given by the following equations,
which model experimental data obtained at Langley
on the shuttle tire:

10

#pnﬂ _ Zp” COS TL@ (AO? < 5 < 02)
p = T n=1 (25)
0 (Iél > 0‘2)
where
2
Pn = ﬁ sin Tlﬁ (26)
nmw

and p, and 3 are functions of £ as shown in figure 10.

Because of the symmetry of the shell meridian
and loading, only half the meridian is analyzed us-
ing 37 elements (a total of 1184 stress-resultant pa-
rameters, 1184 strain parameters, and 743 nonzero
displacement degrees of freedom; see fig. 4(b)). The
boundary conditions at the centerline are taken to
be the symmetric or antisymmetric conditions. Typ-
ical results are presented in figures 11 and 12 and in
tables 7 and 8.

The foregoing procedure was applied to this prob-
lem, and 10 global approximation vectors were eval-
uated at n, = 5 and used to generate the tire re-
sponse for n = 1 to 10. Accuracy of the generalized
displacements obtained by the procedure with 8, 10,
and 15 global approximation vectors is indicated in
figures 11 and 12. Each generalized displacement in
figures 11 and 12 is normalized by dividing by its
maximum absolute value given in tables 7 and 8.
Generalized displacements predicted by the foregoing
procedure with 15 vectors are almost indistinguish-
able from those predicted by the direct finite-element
solution.

Conclusions

A computational procedure is presented for the
geometrically nonlinear analysis of aircraft tires.
The Space Shuttle orbiter nose-gear tire was mod-
eled through use of a two-dimensional laminated
anisotropic shell theory with the effects of variation
in material and geometric parameters included.

The governing discrete equations of the tire are
obtained through application of the three-field Hu-
Washizu mixed variational principle. The multilevel
operator splitting is used to (1) uncouple the equa-
tions associated with different harmonics, (2} identify
the effects of different Fourier harmonics, and (3) de-
lineate the effect of anisotropic (ronorthotropic) ma-
terial properties. The nonlinear governing finite-
element equations of the tire are solved with the
Newton-Raphson iterative procedure. An efficient
procedure is presented for the solution of the result-
ing algebraic equations at each iteration, associated
with different Fourier harmonics. The effectiveness
of this procedure is demonstrated by means of a nu-
merical example of the linear response of the Space
Shuttle orbiter nose-gear tire subjected to inflation
loading. The tire model is subjected to localized
normal loading on the outer surface (simulating the
contact pressure).

Results of the present study suggest the follow-
ing conclusions relative to the two-dimensional shell
model used in simulating the response of the tire and
to the proposed computational procedure for gen-
erating the tire response associated with different
Fourier harmonics:



1. A two-dimensional shell model with variable geo-

metric and stiffness characteristics accurately pre-
dicts the deformation of the tire when subjected
to inflation pressure.

2. Use of path derivatives (derivatives of the response

10

with respect to the Fourier harmonic) as global
approximation vectors leads to accurate solutions
with a small number of vectors. Therefore, the
time required to solve the reduced cquations is
relatively small and the total time required to
generate the response for a range of 10 Fourier
harmonics is little more than that required for a
single Fourier harmonic.

Global approximation vectors provide a direct
measure of the sensitivity of the different response
quantities to the circumferential wave (harmonic)
number. Sensitivity of the global response can
also be assessed with these vectors.

4. The reduction method used in the proposed com-
putational procedure exploits the best clements
of the finite-element method and of the Bubnov-
Galerkin technique, as follows:

a. The finite-clement method is used as a general
approach for generating global approximation
vectors. The full finite-element equations arc
solved only for a single Fourier harmonic.

b. The Bubnov-Galerkin technique is used as an
efficient procedure for minimizing and distrib-
uting the error throughout the structure.

5. The reduction method extends the range of appli-
cability of the Taylor series expansion by relaxing
the requirement of using small changes in the cir-
cumferential wave number.

NASA Langley Research Center
Hampton, VA 23665-5225
January 22, 1990



ORIGINAL PAGE IS
OF POOR QUALITY

Appendix A

Summary of the Equations for a Spline
Under Tension

This appendix presents the interpolation proce-
dure which uses a smoothed spline under tension to
fit a curve through the measured coordinates of the
cross-sectional profile in a least-squares sense. The
cubic spline function requires that the second deriva-
tive be piecewise linear and continuous. Thus. the
second derivative with the effect of tension is speci-

fied by

k(s) = oPx(s) = [%(s) = %y, ] =2 4 [R(sp40) — oy

(s: <s<syp)  (Al)

where x = [z(s), z(s)] is the position vector for points
along the segment; y; = [z, 2]; is the corresponding
data at point i; a dot over a symbol refers to a
derivative with respect to s. The chordal length
(polygonal arc length) s; is given by

s1 =0

and (A2)

i = 81 + [(1‘1 “13171)2 + (zi - 3171)2]1/2

After solving equations (A1) for x(s) and replacing
x(s;) with y;, we obtain

x(s) = [i(si)/a‘z} sinho(s; ] —s)

sinha(s;;1 — s;)

[v: —x(50)/0%] (5151 = 9)

Sitl = 8

+

{x(sﬂ_l)/a?J sinho(s — ;)

sinho(s;y) — s;)

.\ [Yi+l - i(51+1)/02] (s —s5)

Si+l — Si

(A3)

From differentiating equations (A3) and equating
right- and left-side derivatives at s; (for i = 2.3,...,
[—1), we obtain a set of linear algebraic equations for
X(s;). With the assumption of a nonperiodic spline
in which both slopes at s; and s; are provided. the
tridiagonal differential equation is casily solved.

Once the second derivatives at pointi = 1,2,... .1
are obtained, the first and second derivatives x(s)
and X(s) at the interpolated points arc evaluated
by differentiating equations (A3) and they are used
to compute the geometric parameters of the tire in
appendix B.

A normalized tension factor is used to eliminate
a nonlinear behavior by setting (see ref. 24)

r_ o(s —s1)
o= T (A4)

In practice, if this factor is less than 0.001, the
resulting curve is approximately a cubic spline. and
if it is greater than 50, the curve is nearly piecewise
linear. Note that s in cquations (Al) to (A4) is not
the actual arc length but the chordal length. Thus,
the more data points one has from smoothing. the
more accurate the arc length.

11



Appendix B

Geometric Characteristics of the Tire

This appendix presents the geometric charac-
teristics derived from the application of the inter-
polation procedure described in appendix A. From
this spline interpolation, we obtain the following in-
formation about the curve at each interpolated data

it dz dz d%x d?z :
point: s, , z, > &5 ds? and IR The geometric
parameters of the tire are then evaluated as follows:

Normal vector:

dz/ds

{ sin ¢ } @/t T (e

n=—=

dz/ds
V(dz/ds)? + (dz/ds)?

cos ¢

12

Curvatures:
1 3 dz.'I:
K] = — = —COS —
'R dz2
1 cos ¢
Ko == — =
2 Ry x

Note that = = r, the normal distance from the axis
to the reference surface, and dﬁ = % Also note that
the normal vector is used to compute the thickness,
the components of the inflation pressure acting on
the inner surface of the tire, and the transformation
matrix with respect to the global coordinate system,
if necessary.



Appendix C

Constitutive Relations for the Two-Dimensional Laminated Shell Model

This appendix presents the formulas for evaluating the composite elastic coefficients for each ply (from the
properties of the ply constituents) and the resulting shell constitutive relations. The stress-strain relations of

the orthotropic and unidirectional layers are given by

(91 ) fcir ciz2 - : ‘ €1 )
(o) cl2 c2 . : €2
T3 0 = cqq - N IO B
713 : : - C55 - 13

\ T12 ) L . : - cged A2

where the reduced stiffnesses ¢;; are given by

E,
c1] = c4q = Go3
1 —vigv9;
Eqrva
c12 = cs5 = G
1 - vy9v9;
E,
co2 = ces = G12
1 — vov9g

The elastic constants are computed by (see ref. 22)

E1 = ch{: + Er(l - fC)
vig = vefe +vr(1 = fe)
_ E[E(1+2f) + Er(1- fo)]

FE
27 E.(1- f) +2E,(1+05f)
Gro = Gria — Gr[Ge + Gy + (Ge — Gr) fe]
TR TG Gr - (G- GOl
023 = 0.6Gy2
5 vigEy
21 El

where subscripts ¢ and r represent the quantities of the nylon cord and the rubber, respectively, and f. is the
volume fraction of the nylon cord:

7d? (epi)

fe= 4hy,

where d is cord diameter, hy is the layer thickness, and epi is the cord end count (in ends per inch).

13



The relationships between the stress resultants and strain measures of the tire are given by

. : |
( Ns A1 A { I . -
Ng | | €p
Agg | Bz Bx . '
| |
| | . .
| }

Agg

| =

|
s | . .
!
My ! ko
D2 @ IR
!
| . .
!

Mg 2649
L Symmetric Dgg ———
) s 2
l Qg ) L 2¢03)

A44 J

where A;;, B;j, and Dj; (i.j = 1,2,6) are shell stiffness coefficients. The nonorthotropic (anisotropic) terms
are circled and dots indicate zero terms.
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Table 1.

Symmetric and Antisymmetric Tire Parameters With Respect to 8 =0

Symmetric set

Antisymmetric set

Strain components

{E}n Esn:EQns 2E39,n3 Ksn, Esni€0.n> 25s6,m Ks.ns
Kg.n» 2Rs0 ns 26531, 2893 1, Ko 2Ks0.ns 2Es3 ., 263 n
Stress resultants
{H}n Ns‘nsN&yrl»Nsﬂ,nyAIs,rzv Ns,n« N0,717N50,7n HS,na
A'I(),ns ]Msé,m Qs,n» QG,n ]V[g‘n, A[sﬂ,ns Qs,m Q().n
Generalized displacements
{X}n Up, Un, Wn, ¢s,n~ d’e.n U, Un, Wn, ¢sn’ Q’B,n

Table 2. Different Types of Coupling in Analysis of Tires With Semianalytic Finite Elements

Response Material Governing finite-element equations
Linear Isotropic or Uncoupled in harmonics
orthotropic
Symmetric and antisymmetric
variables uncoupled
Anisotropic Uncoupled in harmonics
Symmetric and antisymmetric
variables uncoupled
Nonlinear Anisotropic Coupled in harmonics

Symmetric and antisymmetric
variables coupled
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Table 3. Variation of Ply Thickness hi/ho
[ho = 0.7513 in.]

hy./he for region—

Ply number
(top to bottom) 1 II 1 v \% VI Vil
1 (tread
16
and sidewall) hy=h— 3 h
k=2

a2 0.0865— 0.0865— 0.0658~ 0.0692- | 0.0801- 0.0681- | 0.0918-
.0865 0658 .0692 .0813 .0937 1238 1240

3 .0865— .0865- .0658- .0692- .0801- 0681~ 0918~
.0865 0658 0692 .0813 0937 .1238 1240

4 0865 .0666— 0506~ .0692- .0488- .0523- .0652-
.0865 .0506 .0532 0813 0571 0950 .0880

5 .0666- .0666— 0506~ .0426- .0488- .0523- 0652
.0666 .0506 .0532 .0500 0571 0950 0880
6 0666 0666 .0506-- .0426- 0488~ 0523 b 2662
.0666 0506 .0532 .0500 .0571 .0950 .3594

7 .0666— .0666— .0506— .0426- .0488 - 0523~ .0652-
.0666 .0506 0532 .0500 0571 .0950 .0880

8 .0666- .0666- .0506— 0426~ .0488~ 0523~ .0652-
0666 .0506 0532 .0500 0571 .0950 .0880

9 0666 0666 0506~ 0426 .0488- 0523~ 0652~
.0666 .0506 0532 0500 0571 .0950 .0880

10 .0666- .0466- 0354~ 0426~ .0488- .0523- 0652
.0666 .0354 .0373 .0500 0571 .0950 .0880
11 0466 .0466- .0354- .0346— 0488~ 05623~ b 2662~
.0466 .0354 0373 .0407 0571 0950 3594

12 .0466- 0798~ .0798- .0346- .0375- 0523~ 0652-
.0466 0798 .0798 .0407 .0439 .0950 .0880

13 .0798- 0 0 .0798- 0375~ .0523- .0652-
.0798 .0798 .0439 .0950 .0880

14 0 0 0 0 .0798- .0366- .0466-
0798 .0666 .0629

15 0 0 0 0 0 .0366— 0466~
.0666 .0629

16 0 0 0 0 0 .0798- 1464~
.1464 .1597

aSecond layer of region I represents the layer which has the reinforcement (see fig. 2).
bThis represents the thickness of the bead wires.

17



Table 4. Values of Elastic Constants of Tire Constituents Used in Present Study

Tire constituent

Young's modulus, psi

Shear modulus, psi

Poisson’s ratio

Rubber

Nylon cord
Bead®

4.5 x 102

3.5 x 10°
2.9 x 107

1.51 x 10?

7.00 x 102
1.10 x 107

0.49
.66

.30

@Since the deformations are small in the bead area, it is reasonable to assume that the bead wires are

isotropic.

Table 5. Variation of Nylon Cord End Counts in Different Plies Along Meridian

Cord end count, ends per inch for region
Ply number

(top to bottom) 1 I 11 v \Y% VI VII

1 tread and Rubber Rubber Rubber Rubber Rubber Rubber Rubber
sidewall

2 16-16 18-14 14-14 14-14 14-14 14-14 14 14

3 18-18 18-14 14-14 14-14 14 14 14 14 14-14

4 18-18 21 20 20-18 18- 16 16-16 1614 14 -14

5 23-21 21-20 20-18 18-16 16 16 16-14 14-14

6 23 21 21-20 20-18 18 16 16 16 16--14 Bead

79 23-21 21-20 20-18 18-16 16-16 16-14 14-14

10 23-21 29-26 26- 25 1816 16 16 16-14 14 14

11 30-29 2926 26-25 25-24 16-16 16-14 Bead

12 30-29 Rubber Rubber 25 24 2422 16-14 14 14

13 Rubber Rubber 24-22 16-14 14 14

14 Rubber 22-22 22 22

15 22-22 22-22
16 Rubber Rubber
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Table 6. Variation of Cord Orientation of Individual Plies, 6., Along Meridian Region

0., deg, for region—
Ply number
(top to bottom) I 11 111 v \Y VI VII

1 Rubber Rubber Rubber Rubber Rubber Rubber Rubber

2 96 ] ] ] 6 6 6

3 +6 -9 -9 -6 -6 -0 —6

4 ] 6 ] -0 - ~8 6

5 ] —8 -6 ] 6 ] -9

6 -0 0 ] -9 ] -9 Bead

7 0 -0 -6 ] -6 6 -6

8 -y ] ] -9 6 -0 ]

9 6 -9 -9 ] — ] -9
10 -9 6+6 6+6 -9 6 -6 6
11 6+6 -6 -6 —0—6 0+6 —6 6 Bead
12 -6 | Rubber | Rubber —0-6 0+6 f 0
13 Rubber Rubber -6 -8 -8
14 Rubber 6+6 0+6
15 —0-6 -0-6
16 Rubber Rubbeq
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Table 7. Maximum Absolute Values of Normal Displacement Components Wy,

[Tire shown in fig. 2; Po,max = 445.3 psi; hy = 0.7513 in.; Er, = 1160.3 psi]

Fourier Fourier
harmonic, n wnET, /(Po.maxho) harmonic, n wnET, /(Po,maxho)
1 18.08 6 1.095
2 11.41 7 3122
3 7.110 8 1.134
4 4.841 9 1.424
5 2.906 10 1.313

Table 8. Maximum Absolute Values of In-Plane Displacements and Rotation Components

[Tire shown in fig. 2; Po,max = 445.3 psi; hy = 0.7513 in.; E7, = 1160.3 psi]

Fourier harmonic

Displacements

and rotations n=1 n=2>5 n =10
un ET, / (Po.maxho) 7.584 0.3266 1.229 x 10!
UnET, /(Po,maxho) 04162 01139 3.773 x 1073
®snET, /Do max 3.602 4840 1.304 x 107!
0.0 ET, /Pomax 1805 01271 6.982 x 1073
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(a) Stiffness coefficients associated with uncoupled (orthotropic) response.

Figure 6. Meridional variation of stiffness coefficients of two-dimensional shell mode

1 of Space Shuttle orbiter
nose-gear tire. Ep = 1160.3 psi.
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(b) Coupling (nonorthotropic) stiffness coefficients. a =1, 2.

Figure 6. Concluded.
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strain energy
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Figure 9. Meridional variation of strain ener
shell model of Space Shuttle orbiter nose
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